NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Investigation Of Carbon Contamination And Sputtering Effects Of Xenon Ion ThrustersThe Electro-Physics Branch of the NASA Glenn Research Center investigates the effect of atomic oxygen, environmental durability of high performance power materials and surfaces, and low earth orbit. One of its current projects involves the analysis of ion thrusters. Ion thrusters are devices that initiate a beam of ions to a target area. The type of ion thruster that I have been working with this Summer of 2004 emits positively charged Xenon (Xe(+)) atoms through two grids, the screen grid and the accelerator grid, after it enters an ionization chamber. Insulators are used to mechanically hold and separate these two grids. A propellant isolator, an instrument that closely resembles insulators, is placed in front of the ionization chamber. Both the insulator and isolator are made with a ceramic compound and filled with insulating beads. The main difference between the two devices is that the propellant isolator allows gas to flow through, in this case, the gas is Xe(+) and the insulators do not. In order to avoid carbon deposits and other contaminating chemicals to settle on the insulators and propellant isolator, a metal shadow shield is placed around them. These shadow shields function as a protectant and can be shaped in numerous configurations. Part of my job responsibility this summer is to investigate the effectiveness of different shadow shields that are utilized on three different ion engines: the NSTAR (NASA Solar Electric Propulsion Technology Application Readiness), JIMO (Jupiter Icy Moons Orbiter), and NEXIS (Nuclear Electric Xenon Ion System). Using calculus and other mathematical tactics, I was asked to find the total flux of carbon contamination that was able to pass the protectant shadow shield. I familiarized myself with the software program, MathCad2004, to help perform some mathematical computations such as complex integration. Another method of studying the probability of contamination is by experimental simulation. After attaining the precise parameters of the actual shadow shields, I created replicas of three types of shadow shielding to be used to undergo testing. It will be placed in a machine that produces carbon atoms at a high temperature of 200 C. or beam is aimed at a targeted material. As a result of this collision, atoms and other particles are ejected out of the target surface. Another part of my internship consisted of research on sputter ejection, or the angle distribution of sputtered material. This research entailed finding the past results of sputter ejection investigation as well as creating another type of mock simulation. Other minor projects include calculating the path of Xe(+) gas through the insulating beads of the isolators and assisting my mentor in collecting data for his paper for the Joint Propulsion Conference & Exhibit to be held July 11-14,2004 in Fort Lauderdale, Florida.
Document ID
20050186814
Document Type
Conference Paper
Authors
Prak, Moline K. (John Carroll Univ. United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2004
Publication Information
Publication: Research Symposium I
Subject Category
Electronics and Electrical Engineering
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Related Records

IDRelationTitle20050186794Analytic PrimaryResearch Symposium I