NTRS - NASA Technical Reports Server

Back to Results
Application of Simulated Annealing and Related Algorithms to TWTA DesignSimulated Annealing (SA) is a stochastic optimization algorithm used to search for global minima in complex design surfaces where exhaustive searches are not computationally feasible. The algorithm is derived by simulating the annealing process, whereby a solid is heated to a liquid state and then cooled slowly to reach thermodynamic equilibrium at each temperature. The idea is that atoms in the solid continually bond and re-bond at various quantum energy levels, and with sufficient cooling time they will rearrange at the minimum energy state to form a perfect crystal. The distribution of energy levels is given by the Boltzmann distribution: as temperature drops, the probability of the presence of high-energy bonds decreases. In searching for an optimal design, local minima and discontinuities are often present in a design surface. SA presents a distinct advantage over other optimization algorithms in its ability to escape from these local minima. Just as high-energy atomic configurations are visited in the actual annealing process in order to eventually reach the minimum energy state, in SA highly non-optimal configurations are visited in order to find otherwise inaccessible global minima. The SA algorithm produces a Markov chain of points in the design space at each temperature, with a monotonically decreasing temperature. A random point is started upon, and the objective function is evaluated at that point. A stochastic perturbation is then made to the parameters of the point to arrive at a proposed new point in the design space, at which the objection function is evaluated as well. If the change in objective function values (Delta)E is negative, the proposed new point is accepted. If (Delta)E is positive, the proposed new point is accepted according to the Metropolis criterion: rho((Delta)f) = exp((-Delta)E/T), where T is the temperature for the current Markov chain. The process then repeats for the remainder of the Markov chain, after which the temperature is decremented and the process repeats. Eventually (and hopefully), a near-globally optimal solution is attained as T approaches zero. Several exciting variants of SA have recently emerged, including Discrete-State Simulated Annealing (DSSA) and Simulated Tempering (ST). The DSSA algorithm takes the thermodynamic analogy one step further by categorizing objective function evaluations into discrete states. In doing so, many of the case-specific problems associated with fine-tuning the SA algorithm can be avoided; for example, theoretical approximations for the initial and final temperature can be derived independently of the case. In this manner, DSSA provides a scheme that is more robust with respect to widely differing design surfaces. ST differs from SA in that the temperature T becomes an additional random variable in the optimization. The system is also kept in equilibrium as the temperature changes, as opposed to the system being driven out of equilibrium as temperature changes in SA. ST is designed to overcome obstacles in design surfaces where numerous local minima are separated by high barriers. These algorithms are incorporated into the optimal design of the traveling-wave tube amplifier (TWTA). The area under scrutiny is the collector, in which it would be ideal to use negative potential to decelerate the spent electron beam to zero kinetic energy just as it reaches the collector surface. In reality this is not plausible due to a number of physical limitations, including repulsion and differing levels of kinetic energy among individual electrons. Instead, the collector is designed with multiple stages depressed below ground potential. The design of this multiple-stage collector is the optimization problem of interest. One remaining problem in SA and DSSA is the difficulty in determining when equilibrium has been reached so that the current Markov chain can be terminated. It has been suggested in recent literature that simulating the thermodynamic properties opecific heat, entropy, and internal energy from the Boltzmann distribution can provide good indicators of having reached equilibrium at a certain temperature. These properties are tested for their efficacy and implemented in SA and DSSA code with respect to TWTA collector optimization.
Document ID
Acquisition Source
Document Type
Radke, Eric M.
(California Univ. Los Angeles, CA, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2004
Publication Information
Publication: Research Symposium I
Subject Category
Mechanical Engineering
Distribution Limits
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available