NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Distortion Tolerant Control Flight Demonstration Shown to Be SuccessfulFuture aircraft turbine engines, both commercial and military, will have to be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring for enhanced aircraft maneuverability. As a result, the engines will see more extreme distortion levels than currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High-Speed Civil Transport (HSCT) will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating sufficient component design stall margin to tolerate these expected levels of distortion would result in significant performance penalties. The objectives of NASA's High Stability Engine Control (HISTEC) program, which has reached a highly successful conclusion, were to design, develop, and flight demonstrate an advanced, high-stability, integrated engine control system that uses measurement-based real-time estimates of distortion to enhance engine stability. The resulting distortion tolerant control adjusts the stall margin requirement online in real time. This reduces the design stall margin requirement, with a corresponding increase in performance and decrease in fuel burn.
Document ID
20050188523
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Litt, Jonathan S.
(NASA Lewis Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
April 1, 1999
Publication Information
Publication: Research and Technology 1998
Subject Category
Aircraft Propulsion And Power
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available