NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
"Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated TemperaturesThe accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated-temperature, inert strength of an advanced ceramic material can be defined as the strength where no slow crack growth takes place at the temperature.
Document ID
20050192102
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Choi, Sung R.
(NASA Lewis Research Center Cleveland, OH, United States)
Gyekenyesi, John P.
(NASA Lewis Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
April 1, 1999
Publication Information
Publication: Research and Technology 1998
Subject Category
Nonmetallic Materials
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available