NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Thermomechanical Fatigue Durability of T650-35/PMR-15 Sheet-Molding Compound EvaluatedHigh-performance polymer matrix composites (PMC's) continue to be the focus of a number of research efforts aimed at developing cost-effective, lightweight material alternatives for advanced aerospace and aeropropulsion applications. These materials not only offer significant advantages in specific stiffness and strength over their current metal counterparts, but they can be designed and manufactured to eliminate joints and fasteners by combining individual components into integral subassemblies, thus making them extremely attractive for commercial applications. With much emphasis on the low-cost manufacturing aspects of advanced composite structures, there is heightened interest in high-performance sheet-molding compounds (SMC's). Researchers at the NASA Lewis Research Center, in cooperation with the Allison Advanced Development Company, completed an investigation examining the use of T650-35/PMR-15 SMC for a midstage inner-vane endwall application within a gas turbine engine compressor. This component resides in the engine flow path and is subjected not only to high airflow rates, but also to elevated temperatures and pressures. This application is unique in that it represents a very aggressive use of high-performance SMC's, raising obvious concerns related to durability and property retention in the presence of microstructural damage. Therefore, it was necessary to evaluate the fatigue behavior and damage tolerance of this material subjected to a representative thermomechanical fatigue (TMF) mission-cycle loading spectrum.
Document ID
20050192153
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Castelli, Michael G.
(NASA Lewis Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
April 1, 1999
Publication Information
Publication: Research and Technology 1998
Subject Category
Structural Mechanics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available