NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Very Long Term Oxidation of Titanium Aluminides InvestigatedTitanium aluminides (TiAl) are of great interest for intermediate-temperature (600 to 850 C) aerospace and power-generation applications because they offer significant weight savings over today's nickel alloys. TiAl alloys are being investigated for low-pressure turbine blade applications, exhaust nozzle components, and compressor cases in advanced subsonic and supersonic engines. Significant progress has been made in understanding the fundamental aspects of the oxidation behavior of binary TiAl alloys. However, most of this work has concentrated on short term (<1000 hr), high-temperature (900 to 1000 C) exposures. Also, there is not much data available in the literature regarding the oxidation behavior of the quaternary and higher order engineering alloys. This is especially true for the very long term, low-temperature conditions likely to be experienced during aerospace applications. An investigation at the NASA Glenn Research Center at Lewis Field was undertaken to characterize the long-term oxidation behavior of various model and advanced titanium aluminides for periods up to 7000 hr at 704 C in air using a high-resolution field emission scanning electron microscope. Also, a unique surface treatment technique developed to improve the oxidation resistance of TiAl was evaluated. The alloys included in this investigation are listed in the table. The table also shows typical alloy compositions and the specific weight changes and scale thickness measured for each alloy after exposure to 700 C for 7000 hr in air.
Document ID
20050192197
Acquisition Source
Glenn Research Center
Document Type
Other
Authors
Locci, Ivan E.
Brady, Michael P.
Smialek, James L.
(NASA Glenn Research Center Cleveland, OH, United States)
Retallick, William B.
Date Acquired
September 7, 2013
Publication Date
March 1, 2000
Publication Information
Publication: Research and Technology 1999
Subject Category
Metals And Metallic Materials
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available