NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Neural Network and Regression Soft Model Extended for PAX-300 Aircraft EngineIn fiscal year 2001, the neural network and regression capabilities of NASA Glenn Research Center's COMETBOARDS design optimization testbed were extended to generate approximate models for the PAX-300 aircraft engine. The analytical model of the engine is defined through nine variables: the fan efficiency factor, the low pressure of the compressor, the high pressure of the compressor, the high pressure of the turbine, the low pressure of the turbine, the operating pressure, and three critical temperatures (T(sub 4), T(sub vane), and T(sub metal)). Numerical Propulsion System Simulation (NPSS) calculations of the specific fuel consumption (TSFC), as a function of the variables can become time consuming, and numerical instabilities can occur during these design calculations. "Soft" models can alleviate both deficiencies. These approximate models are generated from a set of high-fidelity input-output pairs obtained from the NPSS code and a design of the experiment strategy. A neural network and a regression model with 45 weight factors were trained for the input/output pairs. Then, the trained models were validated through a comparison with the original NPSS code. Comparisons of TSFC versus the operating pressure and of TSFC versus the three temperatures (T(sub 4), T(sub vane), and T(sub metal)) are depicted in the figures. The overall performance was satisfactory for both the regression and the neural network model. The regression model required fewer calculations than the neural network model, and it produced marginally superior results. Training the approximate methods is time consuming. Once trained, the approximate methods generated the solution with only a trivial computational effort, reducing the solution time from hours to less than a minute.
Document ID
20050202082
Acquisition Source
Glenn Research Center
Document Type
Other
Authors
Patnaik, Surya N.
(NASA Glenn Research Center Cleveland, OH, United States)
Hopkins, Dale A.
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
March 1, 2002
Publication Information
Publication: Research and Technology 2001
Subject Category
Numerical Analysis
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available