NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Experimental Study of Arcing on High-voltage Solar ArraysThe main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.
Document ID
20050206371
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Vayner, Boris
(Ohio Aerospace Inst. Brook Park, OH, United States)
Galofaro, Joel
(NASA Glenn Research Center Cleveland, OH, United States)
Ferguson, Dale
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
April 1, 2005
Publication Information
Publication: 18th Space Photovoltaic Research and Technology Conference
Subject Category
Solar Physics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available