NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Preliminary Investigation of the E-Beam Induced Polymerization of Maleimide and Norbornene End-capped PolyimidesA research area of high activity in connection with aerospace engineering has been the development of polymer thermosetting resins that can resist temperature as high as 300 C while maintaining adequate toughness, and providing ease of processing to enable low temperature and low cost composite fabrication methods. In order to meet such requirements, sequential interpenetrating polymer networks (IPNs) based on bismaleimide (BMI) and cyanate ester (CE) monomers were investigated. In these systems, a polycyanurate network is first formed in the presence of BMI and appropriate reactive diluent monomers and in a second step, a network based on the BMI is created in the presence of a fully formed polycyanurate network. The materials developed can be processed at relatively low temperature (less than 150 C) and with the aid of electron beam (EB) curing. Of major importance to the success of this work was the identification of a reactive diluent that improves ease of processing and has tailored reactivity to allow for the controlled synthesis of CE-BMI sequential IPNs. Based on solubility and reactivity of a number of reactive diluents, N-acryloylmorpholine (AMP) was selected as a comonomer for BMI copolymerization. A donor-acceptoreaction mechanism was suggested to explain the relative reactivity of a variety of reactive diluents towards maleimide functionality. The optimum processing parameters for the formation of the first network were determined through the study of metal catalyzed cure and hydrolysis of cyanate esters, whereas the reaction behavior for second network formation in terms of the influence of EB dose rate and temperature was elucidated through an in-situ kinetics study of maleimide and AMP copolymerization. Structure-property relationships were developed which allowed for the design of improved resin systems. In particular, appropriate network coupler possessing cyanate ester and maleimide functionality was synthesized to link the polycyanurate first network to the BMI/AMP second network and thus form linked sequential IPNs (LIPNs). Consequently, Tg as high as 370 C was achieved and a fracture toughness of 120 Joules per square meters was obtained for resin systems that possess adequately low viscosity for processing using liquid molding techniques at low temperature.
Document ID
20050206411
Acquisition Source
Headquarters
Document Type
Contractor or Grantee Report
Authors
Palmese, Giuseppe R.
(Drexel Univ. Philadelphia, PA, United States)
Meador, Michael A.
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2005
Subject Category
Inorganic, Organic And Physical Chemistry
Funding Number(s)
CONTRACT_GRANT: NCC3-835
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available