NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
Development of a Real-Time GPS/Seismic Displacement Meter: Applications to Civilian Infrastructure in Orange and Western Riverside Counties, CaliforniaWe propose a three-year applications project that will develop an Integrated Real-Time GPS/Seismic System and deploy it in Orange and Western Riverside Counties, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) during all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. Finally, the GPS/Seismic system will also be applicable to navigation in any environment (land, sea, or air) by combining precise real-time instantaneous GPS positioning with inertial navigation systems. This development will take place under the umbrella of the California Spatial Reference Center, in partnership with local (Counties, Riverside County Flood and Water Conservation District, Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCIGN/SCEC2), and the private sector (RBF Consulting). The project will leverage considerable funding, resources, and R&D from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic, hydrological, ecological, and physical data to a variety of end users in real-time in the San Diego region. CSRC is interested in providing users access to real-time, accurate GPS data for a wide variety of applications including RTK surveying/GIS and positioning of moving platforms such as aircraft and emergency vehicles. SCIGN is interested in upgrading sites to high-frequency real-time operations for rapid earthquake response and GPS seismology. The successful outcome of the project will allow the implementation of similar systems elsewhere, particularly in plate boundary zones with significant populations and civilian infrastructure. CSRC would like to deploy the GPS/Seismic System in other parts of California, in particular San Diego, Los Angeles County and the San Francisco Bay Area.
Document ID
20050217107
Acquisition Source
Headquarters
Document Type
Contractor or Grantee Report
Authors
Bock, Yehuda
(Scripps Institution of Oceanography San Diego, CA, United States)
Date Acquired
September 7, 2013
Publication Date
September 23, 2005
Subject Category
Geophysics
Report/Patent Number
UCSD-22-8825
Report Number: UCSD-22-8825
Funding Number(s)
CONTRACT_GRANT: NAG5-13269
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available