NTRS - NASA Technical Reports Server

Back to Results
Nitrile/Buna N Material Failure Assessment for an O-Ring used on the Gaseous Hydrogen Flow Control Valve (FCV) of the Space Shuttle Main EngineAfter the rollout of Space Shuttle Discovery in April 2005 in preparation for return-to-flight, there was a failure of the Orbiter (OV-103) helium signature leak test in the gaseous hydrogen (GH2) system. Leakage was attributed to the Flow Control Valve (FCV) in Main Engine 3. The FCV determined to be the source of the leak for OV-103 is designated as LV-58. The nitrile/Buna N rubber O-ring seal was removed from LV-58, and failure analysis indicated radial cracks providing leak paths in one quadrant. Cracks were eventually found in 6 of 9 FCV O-rings among the three Shuttle Orbiters, though none were as severe as those for LV-58, OV-103. Testing by EM10 at MSFC on all 9 FCV O- rings included: laser dimensional, Shore A hardness and properties from a dynamic mechanical analyzer (DMA) and an Instron tensile machine. The following test data was obtained on the cracked quadrant of the LV-58, OV-103 O-ring: (1) the estimated compression set was only 9.5%, compared to none for the rest of the O-ring; (2) Shore A hardness for the O.D. was higher by almost 4 durometer points than for the rest of the O-ring; and (3) DMA data showed that the storage/elastic modulus E was almost 25% lower than for the rest of the O-ring. Of the 8 FCV O-rings tested on an Instron, 4 yielded tensile strengths that were below the MIL spec requirement of 1350 psi-a likely influence of rubber cracking. Comparisons were made between values of modulus determined by DNA (elastic) and Instron (Young s). Each nitrile/Buna N O-ring used in the FCV conforms to the MIL-P-25732C specification. A number of such O-rings taken from shelf storage at MSFC and Kennedy Space Center (KSC) were used to generate a reference curve of DMA glass transition temperature (Tg) vs. shelf storage time ranging from 8 to 26 years. A similar reference curve of TGA onset temperature (of rubber weight loss) vs. shelf storage time was also generated. The DMA and TGA data for the used FCV O-rings were compared to the reference curves. Correlations were also made between the DMA modulus (at 22 C) and Shore A hardness for all 9 of the FCV O-rings used among the three Shuttle Orbiters. The radial cracking in the FCV O-rings was determined to be due to ozone attack, as nitrile/Buna N rubber is susceptible to such attack. Nitrile/Buna N material under MIL-P25732C should be used in a hydraulic fluid environment to help protect it from cracking. However, the FCV O-rings were used in an air only environment. The FCV design has as much as a 9-mil gap that allows the O.D. of the O-ring to be directly exposed to ozone, pressurized air and some elevated temperatures, accelerating the weathering process that leads to O-ring cracking. Space Shuttle flights will likely not continue past 2010. Therefore, Shuttle management decided to continue using the nitrile/Buna N material for the FCVs, but have each O-ring replaced after 3 years to minimize any chances for crack initiation.
Document ID
Document Type
Conference Paper
Wingard, Doug (NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2006
Subject Category
Mechanical Engineering
Meeting Information
2006 North American Thermal Analysis Society (NATAS) Conference(Bowling Green, KY)
Distribution Limits
Work of the US Gov. Public Use Permitted.