NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Phase Matching of Diverse Modes in a WGM ResonatorPhase matching of diverse electromagnetic modes (specifically, coexisting optical and microwave modes) in a whispering-gallery-mode (WGM) resonator has been predicted theoretically and verified experimentally. Such phase matching is necessary for storage of microwave/terahertz and optical electromagnetic energy in the same resonator, as needed for exploitation of nonlinear optical phenomena. WGM resonators are used in research on nonlinear optical phenomena at low optical intensities and as a basis for design and fabrication of novel optical devices. Examples of nonlinear optical phenomena recently demonstrated in WGM resonators include low-threshold Raman lasing, optomechanical oscillations, frequency doubling, and hyperparametric oscillations. The present findings regarding phase matching were made in research on low-threshold, strongly nondegenerate parametric oscillations in lithium niobate WGM resonators. The principle of operation of such an oscillator is rooted in two previously observed phenomena: (1) stimulated Raman scattering by polaritons in lithium niobate and (2) phase matching of nonlinear optical processes via geometrical confinement of light. The oscillator is partly similar to terahertz oscillators based on lithium niobate crystals, the key difference being that a novel geometrical configuration of this oscillator supports oscillation in the regime. The high resonance quality factors (Q values) typical of WGM resonators make it possible to achieve oscillation at a threshold signal level much lower than that in a non-WGM-resonator lithium niobate crystal.
Document ID
20080047187
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Savchenkov, Anatoliy
(California Inst. of Tech. Pasadena, CA, United States)
Strekalov, Dmitry
(California Inst. of Tech. Pasadena, CA, United States)
Yu, Nan
(California Inst. of Tech. Pasadena, CA, United States)
Matsko, Andrey
(California Inst. of Tech. Pasadena, CA, United States)
Mohageg, Makan
(California Inst. of Tech. Pasadena, CA, United States)
Maleki, Lute
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
November 1, 2008
Publication Information
Publication: NASA Tech Briefs, November 2008
Subject Category
Optics
Report/Patent Number
NPO-45120
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available