NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Microwave-to-Optical Conversion in WGM ResonatorsMicrowave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.
Document ID
20080047214
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Savchenkov, Anatoliy
(California Inst. of Tech. Pasadena, CA, United States)
Strekalov, Dmitry
(California Inst. of Tech. Pasadena, CA, United States)
Yu, Nan
(California Inst. of Tech. Pasadena, CA, United States)
Matsko, Andrey
(California Inst. of Tech. Pasadena, CA, United States)
Maleki, Lute
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
November 1, 2008
Publication Information
Publication: NASA Tech Briefs, November 2008
Subject Category
Documentation And Information Science
Report/Patent Number
NPO-45121
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available