NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Thermally Driven Josephson EffectA concept is proposed of the thermally driven Josephson effect in superfluid helium. Heretofore, the Josephson effect in a superfluid has been recognized as an oscillatory flow that arises in response to a steady pressure difference between two superfluid reservoirs separated by an array of submicron-sized orifices, which act in unison as a single Josephson junction. Analogously, the thermally driven Josephson effect is an oscillatory flow that arises in response to a steady temperature difference. The thermally driven Josephson effect is partly a consequence of a quantum- mechanical effect known as the fountain effect, in which a temperature difference in a superfluid is accompanied by a pressure difference. The thermally driven Josephson effect may have significance for the development of a high-resolution gyroscope based on the Josephson effect in a superfluid: If the pressure-driven Josephson effect were used, then the fluid on the high-pressure side would become depleted, necessitating periodic interruption of operation to reverse the pressure difference. If the thermally driven Josephson effect were used, there would be no net flow and so the oscillatory flow could be maintained indefinitely by maintaining the required slightly different temperatures on both sides of the junction.
Document ID
20080047229
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Penanen, Konstantin
(California Inst. of Tech. Pasadena, CA, United States)
Chui, Talso
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
November 1, 2008
Publication Information
Publication: NASA Tech Briefs, November 2008
Subject Category
Physics (General)
Report/Patent Number
NPO-40231
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available