NTRS - NASA Technical Reports Server

Back to Results
Delaying Trains of Short Light Pulses in WGM ResonatorsSuitably configured whispering-gallery-mode (WGM) optical resonators have been proposed as delay lines for trains of short light pulses. Until now, it has been common practice to implement an optical delay line as a coiled long optical fiber, which is bulky and tends to be noisy. An alternative has been to implement an optical delay line as a coupled-resonator optical waveguide (a chain of coupled optical resonators), which is compact but limits the width of the pulse spectrum to the width of an optical resonance and thereby places a lower limit on the duration of a pulse. In contrast, a delay line according to the proposal could be implemented as a single WGM resonator, and the pulses delayed by the resonator could be so short that their spectral widths could greatly exceed the spectral width of any single resonance. The proposal emerged from theoretical and experimental studies of the propagation of a pulse train in a WGM resonator. An important element of the theoretical study was recognition that the traditional definition of group velocity in effect, the velocity of a single pulse comprising a packet of waves propagating in a medium, the responsivity of which is a monotonous function of frequency does not necessarily apply in the case of a WGM resonator or other medium having a spectrum consisting of discrete resonance peaks at different frequencies. A new definition of group velocity, applicable to a train of pulses propagating in such a medium, was introduced and found to lead to the discovery of previously unknown features of propagation. Notably, it was found that in a micro - sphere optical resonator that supports a suitable combination of WGM modes, the group velocity for a train of light pulses could be positive, zero, or negative. A positive group velocity could be so small that the delay could be much longer than the ring-down time of the resonator; a delay of such great length is impossible for a single pulse interacting with either a linearly responding lossless resonator or a coupled- resonator optical waveguide.
Document ID
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Matsko, Andrey
(California Inst. of Tech. Pasadena, CA, United States)
Iltchenko, Vladimir
(California Inst. of Tech. Pasadena, CA, United States)
Strekalov, Dmitry
(California Inst. of Tech. Pasadena, CA, United States)
Savchenkov, Anatoliy
(California Inst. of Tech. Pasadena, CA, United States)
Maleki, Lute
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
September 1, 2008
Publication Information
Publication: NASA Tech Briefs, September 2008
Subject Category
Report/Patent Number
Distribution Limits
Public Use Permitted.
No Preview Available