NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Particle-Image Velocimeter Having Large Depth of FieldAn instrument that functions mainly as a particle-image velocimeter provides data on the sizes and velocities of flying opaque particles. The instrument is being developed as a means of characterizing fluxes of wind-borne dust particles in the Martian atmosphere. The instrument could also adapted to terrestrial use in measuring sizes and velocities of opaque particles carried by natural winds and industrial gases. Examples of potential terrestrial applications include monitoring of airborne industrial pollutants and airborne particles in mine shafts. The design of this instrument reflects an observation, made in field research, that airborne dust particles derived from soil and rock are opaque enough to be observable by use of bright field illumination with high contrast for highly accurate measurements of sizes and shapes. The instrument includes a source of collimated light coupled to an afocal beam expander and an imaging array of photodetectors. When dust particles travel through the collimated beam, they cast shadows. The shadows are magnified by the beam expander and relayed to the array of photodetectors. Inasmuch as the images captured by the array are of dust-particle shadows rather of the particles themselves, the depth of field of the instrument can be large: the instrument has a depth of field of about 11 mm, which is larger than the depths of field of prior particle-image velocimeters. The instrument can resolve, and measure the sizes and velocities of, particles having sizes in the approximate range of 1 to 300 m. For slowly moving particles, data from two image frames are used to calculate velocities. For rapidly moving particles, image smear lengths from a single frame are used in conjunction with particle- size measurement data to determine velocities.
Document ID
20090011216
Acquisition Source
Goddard Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Bos, Brent
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 24, 2013
Publication Date
March 1, 2009
Publication Information
Publication: NASA Tech Briefs, March 2009
Subject Category
Man/System Technology And Life Support
Report/Patent Number
GSC-15230-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available