NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Particle-Charge SpectrometerAn instrument for rapidly measuring the electric charges and sizes (from approximately 1 to approximately 100 micrometers) of airborne particles is undergoing development. Conceived for monitoring atmospheric dust particles on Mars, instruments like this one could also be used on Earth to monitor natural and artificial aerosols in diverse indoor and outdoor settings for example, volcanic regions, clean rooms, powder-processing machinery, and spray-coating facilities. The instrument incorporates a commercially available, low-noise, ultrasensitive charge-sensing preamplifier circuit. The input terminal of this circuit--the gate of a field-effect transistor--is connected to a Faraday-cage cylindrical electrode. The charged particles of interest are suspended in air or other suitable gas that is made to flow along the axis of the cylindrical electrode without touching the electrode. The flow can be channeled and generated by any of several alternative means; in the prototype of this instrument, the gas is drawn along a glass capillary tube (see upper part of figure) coaxial with the electrode. The size of a particle affects its rate of acceleration in the flow and thus affects the timing and shape of the corresponding signal peak generated by the charge-sensing amplifier. The charge affects the magnitude (and thus also the shape) of the signal peak. Thus, the signal peak (see figure) conveys information on both the size and electric charge of a sensed particle. In experiments thus far, the instrument has been found to be capable of measuring individual aerosol particle charges of magnitude greater than 350 e (where e is the fundamental unit of electric charge) with a precision of +/- 150 e. The instrument can sample particles at a rate as high as several thousand per second.
Document ID
20090011864
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Fuerstenau, Stephen
(California Inst. of Tech. Pasadena, CA, United States)
Wilson, Gregory R.
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
August 1, 2008
Publication Information
Publication: NASA Tech Briefs, August 2008
Subject Category
Instrumentation And Photography
Report/Patent Number
NPO-21183
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available