NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
Evaluating Mars Science Laboratory Landing Sites with the Mars Global Reference Atmospheric Model (Mars-GRAM 2005)The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL) [1]. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: (1) Thermal Emission Spectrometer (TES) mapping years 1 and 2, with Mars-GRAM data coming from NASA Ames Mars General Circulation Model (MGCM) results driven by observed TES dust optical depth or (2) TES mapping year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. Mars-GRAM 2005 has been validated [2] against Radio Science data, and both nadir and limb data from TES [3]. There are several new features included in Mars-GRAM 2005. The first is the option to use input data sets from MGCM model runs that were designed to closely simulate conditions observed during the first two years of TES observations at Mars. The TES Year 1 option includes values from April 1999 through January 2001. The TES Year 2 option includes values from February 2001 through December 2002. The second new feature is the option to read and use any auxiliary profile of temperature and density versus altitude. In exercising the auxiliary profile Mars-GRAM option, values from the auxiliary profile replace data from the original MGCM databases. Some examples of auxiliary profiles include data from TES nadir or limb observations and Mars mesoscale model output at a particular location and time. The final new feature is the addition of two Mars-GRAM parameters that allow standard deviations of Mars-GRAM perturbations to be adjusted. The parameter rpscale can be used to scale density perturbations up or down while rwscale can be used to scale wind perturbations.
Document ID
20090014182
Acquisition Source
Marshall Space Flight Center
Document Type
Extended Abstract
Authors
Justh, H. L.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Justus, C. G.
(Stanley Associates Huntsville, AL, United States)
Date Acquired
August 24, 2013
Publication Date
November 10, 2008
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
MSFC-2165
Report Number: MSFC-2165
Meeting Information
Meeting: Third International Workshop on the Mars Atmosphere: Modeling and Observations
Location: Williamsburg, VA
Country: United States
Start Date: November 10, 2008
End Date: November 13, 2008
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available