NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Simulated Reentry Heating by TorchingThe two first order reentry heating parameters are peak heating flux (W/square cm) and peak heat load (kJ/square cm). Peak heating flux (and deceleration, gs) is higher for a ballistic reentry and peak heat load is higher for a lifting reentry. Manned vehicle reentries are generally lifting reentries at nominal 1-5 gs so that personnel will not be crushed by high deceleration force. A few off-nominal manned reentries have experienced 8 or more gs with corresponding high heating flux (but below nominal heat load). The Shuttle Orbiter reentries provide about an order of magnitude difference in peak heating flux at mid-bottom (TPS tiles, approximately 6 W/square cm or 5 BTU/square ft - sec) and leading edge (RCC, approximately 60 W/square cm or 50 BTU/square ft- sec). Orion lunar return and Mars sample lander are of the same order of magnitude as orbiter leading edge peak heat loads. Flight temperature measurements are available for some orbiter TPS tile and RCC locations. Return-to-Flight on-orbit tile-repair-candidate-material-heating performance was evaluated by matching propane torch heating of candidate-materials temperatures at several depths to orbiter TPS tile flight-temperatures. Char and ash characteristics, heat expansion, and temperature histories at several depths of the cure-in-place ablator were some of the TPS repair material performance characteristics measured. The final char surface was above the initial surface for the primary candidate (silicone based) material, in contrast to a receded surface for the Apollo-type ablative heat shield material. Candidate TPS materials for Orion CEV (LEO and lunar return), and for Mars sample lander (MSL) are now being evaluated. Torching of a candidate ablator material, PICA, was performed to match the ablation experienced by the STARDUST PICA heat shield. Torching showed that the carbon fiberform skeleton in a sample of PICA was inhomogeneous in that sample, and allowed measurements (of the clumps and voids) of the inhomogeneity. Additional reentry heating-performance characterizations of high temperature insulation materials were performed.
Document ID
20090015854
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Harvey, Gale A.
(NASA Langley Research Center Hampton, VA, United States)
Date Acquired
August 24, 2013
Publication Date
September 22, 2008
Publication Information
Publication: 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection
Subject Category
Spacecraft Design, Testing And Performance
Distribution Limits
Public
Copyright
Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available