NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Piecewise-Planar Parabolic Reflectarray AntennaThe figure shows a dual-beam, dualpolarization Ku-band antenna, the reflector of which comprises an assembly of small reflectarrays arranged in a piecewise- planar approximation of a parabolic reflector surface. The specific antenna design is intended to satisfy requirements for a wide-swath spaceborne radar altimeter, but the general principle of piecewise-planar reflectarray approximation of a parabolic reflector also offers advantages for other applications in which there are requirements for wideswath antennas that can be stowed compactly and that perform equally in both horizontal and vertical polarizations. The main advantages of using flat (e.g., reflectarray) antenna surfaces instead of paraboloidal or parabolic surfaces is that the flat ones can be fabricated at lower cost and can be stowed and deployed more easily. Heretofore, reflectarray antennas have typically been designed to reside on single planar surfaces and to emulate the focusing properties of, variously, paraboloidal (dish) or parabolic antennas. In the present case, one approximates the nominal parabolic shape by concatenating several flat pieces, while still exploiting the principles of the planar reflectarray for each piece. Prior to the conception of the present design, the use of a single large reflectarray was considered, but then abandoned when it was found that the directional and gain properties of the antenna would be noticeably different for the horizontal and vertical polarizations.
Document ID
20090020553
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Hodges, Richard
(California Inst. of Tech. Pasadena, CA, United States)
Zawadzki, Mark
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
May 1, 2009
Publication Information
Publication: NASA Tech Briefs, May 2009
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-40889
Report Number: NPO-40889
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available