Mitigating Problems in Measuring Hypergolic FuelsTo monitor hydrazine concentrations accurately and safely, hydrazine is converted into a stable derivative that will be monitored and correlated to the actual hydrazine concentration. The hydrazine's reactivity is harnessed to produce a chemical reaction that will form a stable gas-phase derivative which will not react or decompose before it reaches the detector. Hydrazine, monomethylhydrazine, and unsymmetrical dimethylhydrazine belong to a class of compounds known as hypergolic fuels. These fuels self-ignite upon mixing with hypergolic oxidizer (dinitrogen tetroxide), without need of a spark or other ignition source. The resulting reaction produces thrust with exceptionally high energy, making these compounds particularly useful as rocket propellants. Hydrazines are also highly toxic and corrosive. The combined properties of reactivity, corrosivity, and toxicity present the potential for a leak, a disastrous situation in a hypergol-loaded system. Consequently, leak detection is of the utmost importance in protecting equipment and personnel. Hydrazine vapor quantification presents many challenges in addition to the safety concerns. The reactivity of these compounds causes thermal and catalytic decomposition, which results in significant losses. Further complications arise from the sticky nature of hydrazine. Molecules adsorb irreversibly to virtually any surface they make contact with before detection, which results in instrument drift. These properties make it difficult to accurately quantify hydrazines. Current analytical methods seek to minimize these interactions. After an extensive literature search to determine appropriate chemical reactions, a method was devised to quantify hydrazines, without the limitations of monitoring hydrazines.
Document ID
20090022213
Acquisition Source
Kennedy Space Center
Document Type
Extended Abstract
Date Acquired
August 24, 2013
Publication Date
March 3, 2008
Publication Information
Publication: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report
IDRelationTitle20090022202Collected WorksJohn F. Kennedy Space Center's Technology Development and Application 2006-2007 Report20090022202Collected WorksJohn F. Kennedy Space Center's Technology Development and Application 2006-2007 Report