NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
Parameter Estimation of Lateral Spacecraft Fuel SloshPredicting the effect of fuel slosh on the attitude control system of a spacecraft or launch vehicle is a very important and challenging task. Whether the spacecraft is spinning or moving laterally, the dynamic effect of the fuel slosh helps determine whether the spacecraft will remain on its intended trajectory. Three categories of slosh can be caused by launch vehicle or spacecraft maneuvers when the fuel is in the presence of an acceleration field. These are bulk-fluid motion, subsurface wave motion (currents), and free-surface slosh. Each of these slosh types has a periodic component defined by either a spinning or a lateral motion. For spinning spacecraft, all three types of slosh can greatly affect stability. Bulk-fluid motion and free-surface slosh can affect the lateral-slosh characteristics. For either condition, an unpredicted coupled resonance between the spacecraft and its onboard fuel could threaten a mission. This ongoing research effort seeks to improve the accuracy and efficiency of modeling techniques used to predict these types of fluid motions for lateral motion. Particular efforts focus on analyzing the effects of viscoelastic diaphragms on slosh dynamics.
Document ID
20090022238
Acquisition Source
Kennedy Space Center
Document Type
Reprint (Version printed in journal)
Authors
Sudermann, James E.
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Schlee, Keith L.
(Analex Corp. FL, United States)
Date Acquired
August 24, 2013
Publication Date
March 3, 2008
Publication Information
Publication: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report
Subject Category
Spacecraft Design, Testing And Performance
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available