NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
Airborne Antenna System for Minimum-Cycle-Slip GPS ReceptionA system that includes a Global Positioning System (GPS) antenna and associated apparatus for keeping the antenna aimed upward has been developed for use aboard a remote-sensing-survey airplane. The purpose served by the system is to enable minimum- cycle-slip reception of GPS signals used in precise computation of the trajectory of the airplane, without having to restrict the airplane to maneuvers that increase the flight time needed to perform a survey. Cycle slip signifies loss of continuous track of the phase of a signal. Minimum-cycle-slip reception is desirable because maintaining constant track of the phase of the carrier signal from each available GPS satellite is necessary for surveying to centimeter or subcentimeter precision. Even a loss of signal for as short a time as a nanosecond can cause cycle slip. Cycle slips degrade the quality and precision of survey data acquired during a flight. The two principal causes of cycle slip are weakness of signals and multipath propagation. Heretofore, it has been standard practice to mount a GPS antenna rigidly on top of an airplane, and the radiation pattern of the antenna is typically hemispherical, so that all GPS satellites above the horizon are viewed by the antenna during level flight. When the airplane must be banked for a turn or other maneuver, the reception hemisphere becomes correspondingly tilted; hence, the antenna no longer views satellites that may still be above the Earth horizon but are now below the equatorial plane of the tilted reception hemisphere. Moreover, part of the reception hemisphere (typically, on the inside of a turn) becomes pointed toward ground, with a consequent increase in received noise and, therefore, degradation of GPS measurements. To minimize the likelihood of loss of signal and cycle slip, bank angles of remote-sensing survey airplanes have generally been limited to 10 or less, resulting in skidding or slipping uncoordinated turns. An airplane must be banked in order to make a coordinated turn. For small-radius, short-time coordinated turns, it is necessary to employ banks as steep as 45 , and turns involving such banks are times and for confining airplanes as closely as possible to areas to be surveyed. The idea underlying the design is that if the antenna can be kept properly aimed, then the incidence of cycle slips caused by loss or weakness of signals can be minimized. The system includes an articulating GPS antenna and associated electronic circuitry mounted under a radome atop an airplane. The electronic circuitry includes a microprocessor-based interface-circuit-and-data-translation module. The system receives data on the current attitude of the airplane from the inertial navigation system of the airplane. The microprocessor decodes the attitude data and uses them to compute commands for the GPS-antenna-articulating mechanism to tilt the antenna, relative to the airplane, in opposition to the roll or bank of the airplane to keep the antenna pointed toward the zenith. The system was tested aboard the hurricane- hunting airplane of the National Oceanic and Atmospheric Administration (NOAA) [see figure] during an 11-hour flight to observe the landfall of Hurricane Bret in late summer of 1999. No bank-angle restrictions were imposed during the flight. Post-flight analysis of the GPS trajectory data revealed that no cycle slip had occurred.considered normal maneuvers. These steep banks are highly desirable for minimizing flight
Document ID
20090022327
Acquisition Source
Goddard Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Wright, C. Wayne
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 24, 2013
Publication Date
June 1, 2009
Publication Information
Publication: NASA Tech Briefs, June 2009
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
GSC-14436-1
Patent Number: US-Patent-6,844,856 B1
Report Number: GSC-14436-1
Distribution Limits
Public
Copyright
Public Use Permitted.
Patent
US-Patent-6,844,856 B1
Patent Application
No Preview Available