NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Superconducting Hot-Electron Submillimeter-Wave DetectorA superconducting hot-electron bolometer has been built and tested as a prototype of high-sensitivity, rapid-response detectors of submillimeter-wavelength radiation. There are diverse potential applications for such detectors, a few examples being submillimeter spectroscopy for scientific research; detection of leaking gases; detection of explosive, chemical, and biological weapons; and medical imaging. This detector is a superconducting-transition- edge device. Like other such devices, it includes a superconducting bridge that has a low heat capacity and is maintained at a critical temperature (T(sub c)) at the lower end of its superconducting-transition temperature range. Incident photons cause transient increases in electron temperature through the superconducting-transition range, thereby yielding measurable increases in electrical resistance. In this case, T(sub c) = 6 K, which is approximately the upper limit of the operating-temperature range of silicon-based bolometers heretofore used routinely in many laboratories. However, whereas the response speed of a typical silicon- based laboratory bolometer is characterized by a frequency of the order of a kilohertz, the response speed of the present device is much higher characterized by a frequency of the order of 100 MHz. For this or any bolometer, a useful figure of merit that one seeks to minimize is (NEP)(tau exp 1/2), where NEP denotes the noise-equivalent power (NEP) and the response time. This figure of merit depends primarily on the heat capacity and, for a given heat capacity, is approximately invariant. As a consequence of this approximate invariance, in designing a device having a given heat capacity to be more sensitive (to have lower NEP), one must accept longer response time (slower response) or, conversely, in designing it to respond faster, one must accept lower sensitivity. Hence, further, in order to increase both the speed of response and the sensitivity, one must make the device very small in order to make its heat capacity very small; this is the approach followed in developing the present device.
Document ID
20090027752
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Karasik, Boris
(California Inst. of Tech. Pasadena, CA, United States)
McGrath, William
(California Inst. of Tech. Pasadena, CA, United States)
Leduc, Henry
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
July 1, 2009
Publication Information
Publication: NASA Tech Briefs, July 2009
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
NPO-43619
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available