NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
The Hurricane Imaging Radiometer (HIRAD): Instrument Status and Performance PredictionsThe Hurricane Imaging Radiometer (HIRAD) is an innovative radiometer which offers new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR) [Uhlhorn and Black, 2004]. The HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology [Ruf et al., 1988]. This sensor operates over 4-7 GHz, where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometer [Bettenhausen et al., 2006; Brown et al., 2006]. HIRAD incorporates a new and unique array antenna design along with several technologies successfully demonstrated by the Lightweight Rain Radiometer instrument [Ruf et al., 2002; Ruf and Principe, 2003]. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean winds and rain in hurricane conditions. Accurate observations of surface ocean vector winds (OVW) with high spatial and temporal resolution are required for understanding and predicting tropical cyclones. The Hurricane Imaging Radiometer (HIRAD) is an innovative architecture which offers new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven remote sensing technique for observing tropical cyclone (TC) ocean surface wind speeds and rain rates. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology combined with a a unique array antenna design. The overarching design concept of HIRAD is to combine the multi-frequency C-band observing strategy of the SFMR with STAR technology to produce a wide-swath imager. Single frequency STAR technology The Hurricane Imaging Radiometer (HIRAD) is an innovative radiometer which offers new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR) [Uhlhorn and Black, 2004]. The HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology [Ruf et al., 1988]. This sensor operates over 4-7 GHz, where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometer [Bettenhausen et al., 2006; Brown et al., 2006]. HIRAD incorporates a new and unique array antenna design along with several technologies successfully demonstrated by the Lightweight Rain Radiometer instrument [Ruf et al., 2002; Ruf and Principe, 2003]. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean winds and rain in hurricane conditions. Accurate observations of surface ocean vector winds (OVW) with high spatial and temporal resolution are required for understanding and predicting tropical cyclones. The Hurricane Imaging Radiometer (HIRAD) is an innovative architecture which offers new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven remote sensing technique for observing tropical cyclone (TC) ocean surface wind speeds and rain rates. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology combined with a a unique array antenna design. The overarching design concept of HIRAD is to combine the multi-frequency C-banbserving strategy of the SFMR with STAR technology to produce a wide-swath imager. Single frequency STAR technology
Document ID
20090032918
Acquisition Source
Marshall Space Flight Center
Document Type
Extended Abstract
Authors
Ruf, Christopher
(Michigan Univ. Ann Arbor, MI, United States)
Bailey, M. C.
(University of Central Florida Orlando, FL, United States)
Gross, Steven
(Michigan Univ. Ann Arbor, MI, United States)
Hood, Robbie
(National Oceanic and Atmospheric Administraion United States)
James, Mark
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Johnson, James
(University of Central Florida Orlando, FL, United States)
Jones, Linwood
(University of Central Florida Orlando, FL, United States)
Miller, Timothy
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Uhlhorn, Eric
(National Oceanic and Atmospheric Administraion United States)
Date Acquired
August 24, 2013
Publication Date
July 13, 2009
Subject Category
Meteorology And Climatology
Report/Patent Number
M09-0284
IGARSS Paper No. 2914
Report Number: M09-0284
Report Number: IGARSS Paper No. 2914
Meeting Information
Meeting: IGARSS 2009 International Geoscience and Remote Sensing Symposium
Location: Capetown
Country: South Africa
Start Date: July 13, 2009
End Date: July 17, 2009
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available