NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Recent Shuttle Post Flight MMOD Inspection HighlightsPost flight inspections on the Space Shuttle Atlantis conducted after the STS-11.5 mission revealed a 0.11 inch (2.8 mm) hole in the outer face sheet of the starboard payload bay door radiator panel #4. The payload bay door radiators in this region are 0.5 inch (12.7 mm) thick aluminum honeycomb with 0.011 in (0.279 mm) thick aluminum face sheets topped with 0.005 in (0.127 mm) silver-Teflon tape. Inner face sheet damage included a 0.267 in (6.78 mm) long through crack with measureable deformation in the area of 0.2 in (5.1 mm). There was also a 0.031 in (0.787 nun) diameter hole in the rear face sheet. A large approximately l in (25 mm) diameter region of honeycomb was also destroyed. Since the radiators are located on the inside of the shuttle payload bay doors which are closed during ascent and reentry, the damage could only have occurred during the on-orbit portion of the mission. During the August 2007 STS-118 mission to the International Space Station, a micro-meteoroid or orbital debris (MMOD) particle impacted and completely penetrated one of shuttle Endeavour's radiator panels and the underlying thermal control system (TCS) blanket, leaving deposits on (but no damage to) the payload bay door. While it is not unusual for shuttle orbiters to be impacted by small MMOD particles, the damage from this impact is larger than any previously seen on the shuttle radiator panels. One of the largest impacts ever observed on a crew module window occurred during the November 2008 STS-126 mission to the International Space Station. Damage to the window was documented by the crew on orbit. Post flight inspection revealed a 0.4 in (10.8 mm) crater in the window pane, with a depth of 0.03 in (0.76 mm). The window pane was replaced due to the damage caused by this impact. Analysis performed on residue contained in dental mold impressions taken of the site indicated that a meteoroid particle produced this large damage site. The post flight inspection after the subsequent mission, STS-119 in March of 2009, produced a large MMOD impact feature in a wing leading edge reinforced carbon-carbon panel. The crater measured 0.18 in (4.5 nun) in diameter and was nearly 0.037 in (0.93 nun) deep. The thickness of the silicon carbide coating that protects the carbon substrate is nominally 0.02 in (0.5 nun) to 0.04 in (1 mm), making this a significant impact into the RCC. The damage occurred on the upper surface of the panel, which experiences lower heat loads on re-entry. This poster will document the data collected from the impact sites and will include results of the Scanning Electron Microscope/Energy Dispersive X-ray (SEM/EDX) analysis. Evidence will be presented that suggests a source of the impacts.
Document ID
20090037665
Acquisition Source
Johnson Space Center
Document Type
Abstract
Authors
Hyed, James L.
(Barrios Technology, Inc. Houston, TX, United States)
Christiansen, Eric L.
(NASA Johnson Space Center Houston, TX, United States)
Lear, Dana M.
(NASA Johnson Space Center Houston, TX, United States)
Herrin, Jason S.
(Jacobs Engineering Group, Inc. Houston, TX, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2009
Subject Category
Space Transportation And Safety
Report/Patent Number
JSC-CN-19106
Report Number: JSC-CN-19106
Meeting Information
Meeting: 11th Hypervelocity Impact Symposium
Location: Freiburg
Country: Germany
Start Date: April 11, 2010
End Date: April 14, 2010
Sponsors: Hypervelocity Impact Society
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available