NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Surface Bacterial-Spore Assay Using Tb3+/DPA LuminescenceEquipment and a method for rapidly assaying solid surfaces for contamination by bacterial spores are undergoing development. The method would yield a total (nonviable plus viable) spore count of a surface within minutes and a viable-spore count in about one hour. In this method, spores would be collected from a surface by use of a transparent polymeric tape coated on one side with a polymeric adhesive that would be permeated with one or more reagent(s) for detection of spores by use of visible luminescence. The sticky side of the tape would be pressed against a surface to be assayed, then the tape with captured spores would be placed in a reader that illuminates the sample with ultraviolet light and counts the green luminescence spots under a microscope to quantify the number of bacterial spores per unit area. The visible luminescence spots seen through the microscope would be counted to determine the concentration of spores on the surface. This method is based on the chemical and physical principles of methods described in several prior NASA Tech Briefs articles, including Live/Dead Spore Assay Using DPA-Triggered Tb Luminescence (NPO-30444), Vol. 27, No. 3 (March 2003), page 7a. To recapitulate: The basic idea is to exploit the observations that (1) dipicolinic acid (DPA) is present naturally only in bacterial spores; and (2) when bound to Tb3+ ions, DPA triggers intense green luminescence of the ions under ultraviolet excitation; (3) DPA can be released from the viable spores by using L-alanine to make them germinate; and (4) by autoclaving, microwaving, or sonicating the sample, one can cause all the spores (non-viable as well as viable) to release their DPA. One candidate material for use as the adhesive in the present method is polydimethysiloxane (PDMS). In one variant of the method for obtaining counts of all (viable and nonviable) spores the PDMS would be doped with TbCl3. After collection of a sample, the spores immobilized on the sticky tape surface would be lysed by heating or microwaving to release their DPA. Tb3+ ions from the TbCl3 would become bound to the released DPA. The tape would then be irradiated with ultraviolet and examined as described above. In another variant of the method - for obtaining counts of viable spores only - the PDMS would be doped with L-alanine in addition to TbCl3. As now envisioned, a fully developed apparatus for implementing this method would include a pulsed source of ultraviolet light and a time-gated electronic camera to record the images seen through the microscope during a prescribed exposure interval at a prescribed short time after an ultraviolet pulse. As in the method of the second-mentioned prior article, the pulsing and time-gating would be used to discriminate between the longer-lived Tb3+/DPA luminescence and the shorter-lived background luminescence in the same wavelength range. In a time-gated image, the bright luminescence from bacterial spores could easily be seen against a dark background.
Document ID
20090040753
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Ponce, Adrian
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
September 8, 2013
Publication Date
January 1, 2007
Publication Information
Publication: NASA Tech Briefs, January 2007
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
NPO-40646
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available