NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
High-Resolution, Wide-Field-of-View Scanning TelescopeA proposed telescope would afford high resolution over a narrow field of view (<0.10 ) while scanning over a total field of view nominally 16 wide without need to slew the entire massive telescope structure. The telescope design enables resolution of a 1-m-wide object in a 50- km-wide area of the surface of the Earth as part of a 200-km-wide area field of view monitored from an orbit at an altitude of 700 km. The conceptual design of this telescope could also be adapted to other applications both terrestrial and extraterrestrial in which there are requirements for telescopes that afford both wide- and narrow-field capabilities. In the proposed telescope, the scanning would be effected according to a principle similar to that of the Arecibo radio telescope, in which the primary mirror is stationary with respect to the ground and a receiver is moved across the focal surface of the primary mirror. The proposed telescope would comprise (1) a large spherical primary mirror that would afford high resolution over a narrow field of view and (2) a small displaceable optical relay segment that would be pivoted about the center of an aperture stop to effect the required scanning (see figure). Taken together, both comprise a scanning narrow-angle telescope that does not require slewing the telescope structure. In normal operation, the massive telescope structure would stare at a fixed location on the ground. The inner moveable relay optic would be pivoted to scan the narrower field of view over the wider one, making it possible to retain a fixed telescope orientation, while obtaining high-resolution images over multiple target areas during an interval of 3 to 4 minutes in the intended orbit. The pivoting relay segment of the narrow-angle telescope would include refractive and reflective optical elements, including two aspherical mirrors, to counteract the spherical aberration of the primary mirror. Overall, the combination of the primary mirror and the smaller relay optic would provide narrow-angle, diffraction-limited high resolution at a wavelength of 500 nm.
Document ID
20090040765
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Sepulveda, Cesar
(California Inst. of Tech. Pasadena, CA, United States)
Wilson, Robert
(California Inst. of Tech. Pasadena, CA, United States)
Seshadri, Suresh
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
September 8, 2013
Publication Date
January 1, 2007
Publication Information
Publication: NASA Tech Briefs, January 2007
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
NPO-30891
Report Number: NPO-30891
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available