NTRS - NASA Technical Reports Server

Back to Results
Ice-Penetrating Robot for Scientific ExplorationThe cryo-hydro integrated robotic penetrator system (CHIRPS) is a partially developed instrumentation system that includes a probe designed to deeply penetrate the European ice sheet in a search for signs of life. The CHIRPS could also be used on Earth for similar exploration of the polar ice caps especially at Lake Vostok in Antarctica. The CHIRPS probe advances downward by a combination of simple melting of ice (typically for upper, non-compacted layers of an ice sheet) or by a combination of melting of ice and pumping of meltwater (typically, for deeper, compacted layers). The heat and electric power for melting, pumping, and operating all of the onboard instrumentation and electronic circuitry are supplied by radioisotope power sources (RPSs) and thermoelectric converters energized by the RPSs. The instrumentation and electronic circuitry includes miniature guidance and control sensors and an advanced autonomous control system that has fault-management capabilities. The CHIRPS probe is about 1 m long and 15 cm in diameter. The RPSs generate a total thermal power of 1.8 kW. Initially, as this power melts the surrounding ice, a meltwater jacket about 1 mm thick forms around the probe. The center of gravity of the probe is well forward (down), so that the probe is vertically stabilized like a pendulum. Heat is circulated to the nose by means of miniature pumps and heat pipes. The probe melts ice to advance in a step-wise manner: Heat is applied to the nose to open up a melt void, then heat is applied to the side to allow the probe to slip down into the melt void. The melt void behind the probe is allowed to re-freeze. Four quadrant heaters on the nose and another four quadrant heaters on the rear (upper) surface of the probe are individually controllable for steering: Turning on two adjacent nose heaters on the nose and two adjacent heaters on the opposite side at the rear causes melt voids to form on opposing sides, such that the probe descends at an angle from vertical. This steering capability can be used to avoid debris trapped in the ice or to maneuver closer to a trapped object of scientific interest.
Document ID
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Zimmerman, Wayne
(California Inst. of Tech. Pasadena, CA, United States)
Carsey, Frank
(California Inst. of Tech. Pasadena, CA, United States)
French, Lloyd
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
February 1, 2007
Publication Information
Publication: NASA Tech Briefs, February 2007
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
Distribution Limits
Public Use Permitted.
No Preview Available