NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Asymmetric Bulkheads for Cylindrical Pressure VesselsAsymmetric bulkheads are proposed for the ends of vertically oriented cylindrical pressure vessels. These bulkheads, which would feature both convex and concave contours, would offer advantages over purely convex, purely concave, and flat bulkheads (see figure). Intended originally to be applied to large tanks that hold propellant liquids for launching spacecraft, the asymmetric-bulkhead concept may also be attractive for terrestrial pressure vessels for which there are requirements to maximize volumetric and mass efficiencies. A description of the relative advantages and disadvantages of prior symmetric bulkhead configurations is prerequisite to understanding the advantages of the proposed asymmetric configuration: In order to obtain adequate strength, flat bulkheads must be made thicker, relative to concave and convex bulkheads; the difference in thickness is such that, other things being equal, pressure vessels with flat bulkheads must be made heavier than ones with concave or convex bulkheads. Convex bulkhead designs increase overall tank lengths, thereby necessitating additional supporting structure for keeping tanks vertical. Concave bulkhead configurations increase tank lengths and detract from volumetric efficiency, even though they do not necessitate additional supporting structure. The shape of a bulkhead affects the proportion of residual fluid in a tank that is, the portion of fluid that unavoidably remains in the tank during outflow and hence cannot be used. In this regard, a flat bulkhead is disadvantageous in two respects: (1) It lacks a single low point for optimum placement of an outlet and (2) a vortex that forms at the outlet during outflow prevents a relatively large amount of fluid from leaving the tank. A concave bulkhead also lacks a single low point for optimum placement of an outlet. Like purely concave and purely convex bulkhead configurations, the proposed asymmetric bulkhead configurations would be more mass-efficient than is the flat bulkhead configuration. In comparison with both purely convex and purely concave configurations, the proposed asymmetric configurations would offer greater volumetric efficiency. Relative to a purely convex bulkhead configuration, the corresponding asymmetric configuration would result in a shorter tank, thus demanding less supporting structure. An asymmetric configuration provides a low point for optimum location of a drain, and the convex shape at the drain location minimizes the amount of residual fluid.
Document ID
20090040807
Acquisition Source
Marshall Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Ford, Donald B.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 24, 2013
Publication Date
February 1, 2007
Publication Information
Publication: NASA Tech Briefs, February 2007
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
MFS-31626-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available