NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Advisory – Planned Maintenance: On Monday, July 15 at 9 PM Eastern the STI Compliance and Distribution Services will be performing planned maintenance on the STI Repository (NTRS) for approximately one hour. During this time users will not be able to access the STI Repository (NTRS).

Back to Results
MoO3 Cathodes for High-Temperature Lithium Thin-Film CellsMoO3 has shown promise as a cathode material that can extend the upper limit of operating temperature of rechargeable lithium thin-film electrochemical cells. Cells of this type are undergoing development for use as energy sources in cellular telephones, wireless medical sensors, and other, similarly sized portable electronic products. The LiCoO2 and LiMn2O4 cathodes heretofore used in these cells exhibit outstanding cycle lives (of the order of hundreds of thousands of cycles) at room temperature, but operation at higher temperatures reduces their cycle lives substantially: for example, at a temperature of 150 C, cells containing LiCoO2 cathodes lose half their capacities in 100 charge/discharge cycles. The superiority of MoO3 as a cathode material was demonstrated in experiments on lithium thin-film cells fabricated on glass slides. Each cell included a layer of Ti (for adhesion to the glass slide), a patterned layer of Pt that served as a cathode current collector, a cathode layer of MoO3, a solid electrolyte layer of Li3.3 PO3.8 N0.22 ("LiPON"), and an anode layer of Li. All the layers were deposited by magnetron sputtering except for the Li layer, which was deposited by thermal evaporation. These cells, along with similar ones containing LiCoO2 cathodes, were subjected to several tests, including measurements of specific capacity in charge/discharge cycling at a temperature of 150 C. The results of these measurements, plotted in the figure, showed that whereas specific capacity of the cells containing LiCoO2 cathodes faded to about half its initial value after only 100 cycles, the specific capacity of the cells containing the MoO3 cathodes faded only slightly during the first few hundred cycles and thereafter not only recovered to its initial value but continued to increase up to at least 5,500 cycles.
Document ID
20090041277
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
West, William
(California Inst. of Tech. Pasadena, CA, United States)
Whitacre, Jay
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
April 1, 2007
Publication Information
Publication: NASA Tech Briefs, April 2007
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-41099
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available