NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Supercapacitor Electrolyte Solvents with Liquid Range Below -80 CA previous NASA Tech Brief ["Low-Temperature Supercapacitors" (NPO-44386) NASA Tech Briefs, Vol. 32, No 7 (July 2008), page 32] detailed ongoing efforts to develop non-aqueous supercapacitor electrolytes capable of supporting operation at temperatures below commercially available cells (which are typically limited to charging and discharging at > or equal to -40 C). These electrolyte systems may enable energy storage and power delivery for systems operating in extreme environments, such as those encountered in the Polar regions on Earth or in the exploration of space. Supercapacitors using these electrolytes may also offer improved power delivery performance at moderately low temperatures (e.g. -40 to 0 C) relative to currently available cells, offering improved cold-cranking and cold-weather acceleration capabilities for electrical or hybrid vehicles. Supercapacitors store charge at the electrochemical double-layer, formed at the interface between a high surface area electrode material and a liquid electrolyte. The current approach to extending the low-temperature limit of the electrolyte focuses on using binary solvent systems comprising a high-dielectric-constant component (such as acetonitrile) in conjunction with a low-melting-point co-solvent (such as organic formates, esters, and ethers) to depress the freezing point of the system, while maintaining sufficient solubility of the salt. Recent efforts in this area have led to the identification of an electrolyte solvent formulation with a freezing point of -85.7 C, which is achieved by using a 1:1 by volume ratio of acetonitrile to 1,3-dioxolane
Document ID
20100001352
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Brandon, Erik
(California Inst. of Tech. Pasadena, CA, United States)
Smart, Marshall
(California Inst. of Tech. Pasadena, CA, United States)
West, William
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
January 1, 2010
Publication Information
Publication: NASA Tech Briefs, January 2010
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-44855
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available