NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Coating Thermoelectric Devices To Suppress SublimationA technique for suppressing sublimation of key elements from skutterudite compounds in advanced thermoelectric devices has been demonstrated. The essence of the technique is to cover what would otherwise be the exposed skutterudite surface of such a device with a thin, continuous film of a chemically and physically compatible metal. Although similar to other sublimation-suppression techniques, this technique has been specifically tailored for application to skutterudite antimonides. The primary cause of deterioration of most thermoelectric materials is thermal decomposition or sublimation - one or more elements sublime from the hot side of a thermoelectric couple, changing the stoichiometry of the device. Examples of elements that sublime from their respective thermoelectric materials are Ge from SiGe, Te from Pb/Te, and now Sb from skutterudite antimonides. The skutterudite antimonides of primary interest are CoSb3 [electron-donor (n) type] and CeFe(3-x)Co(x)Sb12 [electron-acceptor (p) type]. When these compounds are subjected to typical operating conditions [temperature of 700 C and pressure <10(exp -5) torr (0.0013 Pa)], Sb sublimes from their surfaces, with the result that Sb depletion layers form and advance toward their interiors. As the depletion layer advances in a given device, the change in stoichiometry diminishes the thermal-to-electric conversion efficiency of the device. The problem, then, is to prevent sublimation, or at least reduce it to an acceptably low level. In preparation for an experiment on suppression of sublimation, a specimen of CoSb3 was tightly wrapped in a foil of niobium, which was selected for its chemical stability. In the experiment, the wrapped specimen was heated to a temperature of 700 C in a vacuum of residual pressure <10(exp -5) torr (0.0013 Pa), then cooled and sectioned. Examination of the sectioned specimen revealed that no depletion layer had formed, indicating the niobium foil prevented sublimation of antimony at 700 C. This was a considerable improvement, considering that uncoated CoSb3 had been found to decompose to form the lowest antimonide at the surface at only 600 C. Evidently, because the mean free path of Sb at the given temperature and pressure was of the order of tens of centimeters, any barrier closer than tens of centimeters (as was the niobium foil) would have suppressed transport of Sb vapor, thereby suppressing sublimation of Sb
Document ID
20100010973
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Sakamoto, Jeffrey
(California Inst. of Tech. Pasadena, CA, United States)
Caillat, Thierry
(California Inst. of Tech. Pasadena, CA, United States)
Fleurial, Jean-Pierre
(California Inst. of Tech. Pasadena, CA, United States)
Snyder, G. Jeffrey
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
September 1, 2007
Publication Information
Publication: NASA Tech Briefs, September 2007
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-40040
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available