NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
System Would Detect Foreign-Object Damage in Turbofan EngineA proposed data-fusion system, to be implemented mostly in software, would further process the digitized and preprocessed outputs of sensors in a turbofan engine to detect foreign-object damage (FOD) [more precisely, damage caused by impingement of such foreign objects as birds, pieces of ice, and runway debris]. The proposed system could help a flight crew to decide what, if any, response is necessary to complete a flight safely, and could aid mechanics in deciding what post-flight maintenance action might be needed. The sensory information to be utilized by the proposed system would consist of (1) the output of an accelerometer in an engine-vibration-monitoring subsystem and (2) features extracted from a gas path analysis. ["Gas path analysis" (GPA) is a term of art that denotes comprehensive analysis of engine performance derived from readings of fuel-flow meters, shaft-speed sensors, temperature sensors, and the like.] The acceleration signal would first be processed by a wavelet-transform-based algorithm, using a wavelet created for the specific purpose of finding abrupt FOD-induced changes in noisy accelerometer signals. Two additional features extracted would be the amplitude of vibration (determined via a single- frequency Fourier transform calculated at the rotational speed of the engine), and the rate of change in amplitude due to an FOD-induced rotor imbalance. This system would utilize two GPA features: the fan efficiency and the rate of change of fan efficiency with time. The selected GPA and vibrational features would be assessed by two fuzzy-logic inference engines, denoted the "Gas Path Expert" and the "Vibration Expert," respectively (see Figure 1). Each of these inference engines would generate a "possibility" distribution for occurrence of an FOD event: Each inference engine would assign, to its input information, degrees of membership, which would subsequently be transformed into basic probability assignments for the gas path and vibration components. The outputs of the inference engines would be fused by use of Dempster s combination algorithm (more precisely, an algorithm, based on the Dempster-Shafer-Yager theory of evidence, for fusing uncertain or imprecise information) to provide a reduced body of information to a human or computer decision maker. Figure 2 depicts some outputs generated in response to simulated accelerometer and GPA signals
Document ID
20100014099
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Torso, James A.
(QSS Group, Inc. Cleveland, OH, United States)
Litt, Jonathan S.
(Army Research Lab. Cleveland, OH, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2006
Publication Information
Publication: NASA Tech Briefs, January 2006
Subject Category
Man/System Technology And Life Support
Report/Patent Number
LEW-17843-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available