NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Solar Array Disturbances to Spacecraft Pointing During the Lunar Reconnaissance Orbiter (LRO) MissionThe Lunar Reconnaissance Orbiter (LRO), the first spacecraft to support NASA s return to the Moon, launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle. It was initially inserted into a direct trans-lunar trajectory to the Moon. After a five day transit to the Moon, LRO was inserted into the Lunar orbit and successfully lowered to a low altitude elliptical polar orbit for spacecraft commissioning. Successful commissioning was completed in October 2009 when LRO was placed in its near circular mission orbit with an approximate altitude of 50km. LRO will spend at least one year orbiting the Moon, collecting lunar environment science and mapping data, utilizing a suite of seven instruments to enable future human exploration. The objective is to provide key science data necessary to facilitate human return to the Moon as well as identification of opportunities for future science missions. LRO's instrument suite will provide the high resolution imaging data with sub-meter accuracy, highly accurate lunar cartographic maps, mineralogy mapping, amongst other science data of interest. LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing Mode", provides Lunar nadir, off-nadir, and inertial fine pointing for the science data collection and instrument calibration. This controller combines the capability of fine pointing with on-demand large angle full-sky attitude reorientation. It provides simplicity of spacecraft operation as well as additional flexibility for science data collection. A conventional suite of ACS components is employed in the Observing Mode to meet the pointing and control objectives. Actuation is provided by a set of four reaction wheels developed in-house at NASA Goddard Space Flight Center (GSFC). Attitude feedback is provided by a six state Kalman filter which utilizes two SELEX Galileo Star Trackers for attitude updates, and a single Honeywell Miniature Inertial Measurement Unit (MIMU) to provide body rates for attitude propagation. Rate is computed by differentiating accumulated angle provided by the MIMU. The Observing Mode controller is required to maintain fine pointing while a large fully-articulated solar array (SA) maintains its panel normal to the solar incidence. This paper describes the disturbances to the attitude control resulting from the SA articulation. Observing Mode performance in the presence of this disturbance was assessed while the spacecraft was in an initial elliptical low altitude orbit during the commissioning phase, which started about two weeks after launch and lasted for 90 days. LRO demonstrated excellent pointing performance during Observing Mode nadir and inertial attitude target operations during this phase. Transient LRO attitude errors observed during commissioning resulted primarily from three sources, Diviner instrument calibrations, RW zero crossings, and SA articulation. Even during times of considerable disturbance from SA articulation, the attitude errors were maintained below the statistical attitude error requirement level of 15 arc-sec (3 sigma).
Document ID
20100014261
Acquisition Source
Goddard Space Flight Center
Document Type
Extended Abstract
Authors
Calhoun, Philip
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2010
Subject Category
Lunar And Planetary Science And Exploration
Meeting Information
Meeting: American Institute of Aeronautics and Astronautics (AIAA) Guidance, Navigation and Control (GN&C) Conference
Location: Toronto
Country: Canada
Start Date: August 2, 2010
End Date: August 5, 2010
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available