NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Three Methods of Detection of HydrazinesThree proposed methods for measuring trace quantities of hydrazines involve ionization and detection of hydrazine derivatives. These methods are intended to overcome the limitations of prior hydrazine- detection methods. Hydrazine (Hz), monomethylhydrazine (MMH), and unsymmetrical dimethylhydrazine (UDMH) are hypergolic fuels and are highly reactive, toxic, and corrosive. A capability to measure concentrations of hydrazines is desirable for detecting leaks and ensuring safety in aerospace settings and in some industrial settings in which these compounds are used. One of the properties (high reactivity) that make it desirable to detect trace amounts of hydrazines also makes it difficult to detect hydrazines and measure their concentrations accurately using prior methods: significant amounts are lost to thermal and catalytic decomposition prior to detection. Further complications arise from the sticky nature of hydrazines: Sample hydrazine molecules tend to become irreversibly adsorbed onto solid surfaces with which they come into contact during transport to detectors, giving rise to drift in detector responses. In each proposed method, the reactive, sticky nature of hydrazines would be turned to advantage by providing a suitably doped substrate surface with which the hydrazines would react. The resulting hydrazine derivatives would be sufficiently less sticky and sufficiently more stable so that fewer molecules would be lost to decomposition or adsorption during transport. Consequently, it would be possible to measure concentration with more sensitivity and less error than in prior techniques. The first proposed method calls for the use of a recently developed technique known as desorption electrospray ionization (DESI), in which a pneumatically assisted micro -electrospray at ambient pressure is directed at a surface of interest. In this case, the surface of interest would be that of a substrate described above.
Document ID
20100019627
Acquisition Source
Kennedy Space Center
Document Type
Other - NASA Tech Brief
Authors
Griffin, Timothy
(NASA Kennedy Space Center Cocoa Beach, FL, United States)
Berger, Cristina
(ASRC Aerospace Corp. Cocoa Beach, FL, United States)
Date Acquired
August 24, 2013
Publication Date
May 1, 2010
Publication Information
Publication: NASA Tech Briefs, May 2010
Subject Category
Man/System Technology And Life Support
Report/Patent Number
KSC-13121/2/3
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available