NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Periodically Discharging, Gas-Coalescing FilterA proposed device would remove bubbles of gas from a stream of liquid (typically water), accumulate the gas, and periodically release the gas, in bulk, back into the stream. The device is intended for use in a flow system (1) in which there is a requirement to supply bubble-free water to a downstream subsystem and (2) that includes a sensor and valves, just upstream of the subsystem, for sensing bubbles and diverting the flow from the subsystem until the water stream is again free of bubbles. By coalescing the gas bubbles and then periodically releasing the accumulated gas, the proposed device would not contribute to net removal of gas from the liquid stream; nevertheless, it would afford an advantage by reducing the frequency with which the diverter valves would have to be activated. The device (see figure) would include an upper and a lower porous membrane made of a hydrophilic material. Both membranes would cover openings in a tube leading to an outlet. These membranes would allow water, but not gas bubbles, to pass through to the interior of the tube. Inside the tube, between the two membranes, there would be a flow restrictor that would play a role described below. Below both membranes there would be a relief valve. Water, possibly containing bubbles, would enter from the top and would pass through either the lower membrane or both membranes, depending how much gas had been accumulated thus far. When the volume of accumulated gas was sufficient to push the top surface of the liquid below the lower porous membrane, water could no longer flow through either membrane toward the outlet. This blockage would cause an increase in back pressure that would cause the relief valve to open. The opening of the relief valve would allow both the water and the bulk-accumulated gas to pass through to the outlet. Once the gas had been pushed out, water would once again flow through both membranes at a much lower pressure drop. The flow restrictor would maintain enough pressure drop to keep the relief valve open until gas had been cleared from both hydrophilic membranes.
Document ID
20100021322
Acquisition Source
Marshall Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Carter, Donald Layne
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Holder, Donald W.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 24, 2013
Publication Date
February 1, 2006
Publication Information
Publication: NASA Tech Briefs, February 2006
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MFS-31930
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available