NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Miniature Low-Mass Drill Actuated by Flextensional Piezo StackRecent experiments with a flextensional piezoelectric actuator have led to the development of a sampler with a bit that is designed to produce and capture a full set of sample forms including volatiles, powdered cuttings, and core fragments. The flextensional piezoelectric actuator is a part of a series of devices used to amplify the generated strain from piezoelectric actuators. Other examples include stacks, bimorphs, benders, and cantilevers. These devices combine geometric and resonance amplifications to produce large stroke at high power density. The operation of this sampler/drill was demonstrated using a 3x2x1-cm actuator weighing 12 g using power of about 10-W and a preload of about 10 N. A limestone block was drilled to a depth of about 1 cm in five minutes to produce powdered cuttings. It is generally hard to collect volatiles from random surface profiles found in rocks and sediment, powdered cuttings, and core fragments. Toward the end of collecting volatiles, the actuator and the bit are covered with bellows-shaped shrouds to prevent fines and other debris from reaching the analyzer. A tube with a miniature bellows (to provide flexibility) is connected to the bit and directs the flow of the volatiles to the analyzer. Another modality was conceived where the hose is connected to the bellows wall directly to allow the capture of volatiles generated both inside and outside the bit. A wide variety of commercial bellows used in the vacuum and microwave industries can be used to design the volatiles capture mechanism. The piezoelectric drilling mechanism can potentially be operated in a broad temperature range from about-200 to less than 450 C. The actuators used here are similar to the actuators that are currently baselined to fly as part of the inlet funnel shaking mechanism design of MSL (Mars Science Laboratory). The space qualification of these parts gives this drill a higher potential for inclusion in a future mission, especially when considering its characteristics of low mass, small size, low power, and low axial loads for sampling.
Document ID
20100028886
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Sherrit, Stewart
(California Inst. of Tech. Pasadena, CA, United States)
Badescu, Mircea
(California Inst. of Tech. Pasadena, CA, United States)
Bar-Cohen, Yoseph
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
August 1, 2010
Publication Information
Publication: NASA Tech Briefs, August 2010
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-45857
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available