NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
MIRO Computational ModelA computational model calculates the excitation of water rotational levels and emission-line spectra in a cometary coma with applications for the Micro-wave Instrument for Rosetta Orbiter (MIRO). MIRO is a millimeter-submillimeter spectrometer that will be used to study the nature of cometary nuclei, the physical processes of outgassing, and the formation of the head region of a comet (coma). The computational model is a means to interpret the data measured by MIRO. The model is based on the accelerated Monte Carlo method, which performs a random angular, spatial, and frequency sampling of the radiation field to calculate the local average intensity of the field. With the model, the water rotational level populations in the cometary coma and the line profiles for the emission from the water molecules as a function of cometary parameters (such as outgassing rate, gas temperature, and gas and electron density) and observation parameters (such as distance to the comet and beam width) are calculated.
Document ID
20100028894
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Broderick, Daniel
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
August 1, 2010
Publication Information
Publication: NASA Tech Briefs, August 2010
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-46508
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available