NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
High-Temperature Surface-Acoustic-Wave TransducerAircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.
Document ID
20100036551
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Zhao, Xiaoliang
(Intelligent Automation Systems, Inc. United States)
Tittmann, Bernhard R.
(Pennsylvania State Univ. PA, United States)
Date Acquired
August 25, 2013
Publication Date
October 1, 2010
Publication Information
Publication: NASA Tech Briefs, October 2010
Subject Category
Acoustics
Report/Patent Number
LEW-18547-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available