NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff WavelengthA mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature infrared with reduced cooling requirement would benefit space missions in reduction of size, weight, and power, and an increase in mission lifetime.
Document ID
20110012200
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Ting, David Z.
(California Inst. of Tech. Pasadena, CA, United States)
Hill, Cory, J.
(California Inst. of Tech. Pasadena, CA, United States)
Soibel, Alexander
(California Inst. of Tech. Pasadena, CA, United States)
Bandara, Sumith V.
(California Inst. of Tech. Pasadena, CA, United States)
Gunapala, Sarath D.
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
February 1, 2011
Publication Information
Publication: NASA Tech Briefs, February 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-46477
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available