NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Stereo Imaging Miniature EndoscopeStereo imaging requires two different perspectives of the same object and, traditionally, a pair of side-by-side cameras would be used but are not feasible for something as tiny as a less than 4-mm-diameter endoscope that could be used for minimally invasive surgeries or geoexploration through tiny fissures or bores. The proposed solution here is to employ a single lens, and a pair of conjugated, multiple-bandpass filters (CMBFs) to separate stereo images. When a CMBF is placed in front of each of the stereo channels, only one wavelength of the visible spectrum that falls within the passbands of the CMBF is transmitted through at a time when illuminated. Because the passbands are conjugated, only one of the two channels will see a particular wavelength. These time-multiplexed images are then mixed and reconstructed to display as stereo images. The basic principle of stereo imaging involves an object that is illuminated at specific wavelengths, and a range of illumination wavelengths is time multiplexed. The light reflected from the object selectively passes through one of the two CMBFs integrated with two pupils separated by a baseline distance, and is focused onto the imaging plane through an objective lens. The passband range of CMBFs and the illumination wavelengths are synchronized such that each of the CMBFs allows transmission of only the alternate illumination wavelength bands. And the transmission bandwidths of CMBFs are complementary to each other, so that when one transmits, the other one blocks. This can be clearly understood if the wavelength bands are divided broadly into red, green, and blue, then the illumination wavelengths contain two bands in red (R1, R2), two bands in green (G1, G2), and two bands in blue (B1, B2). Therefore, when the objective is illuminated by R1, the reflected light enters through only the left-CMBF as the R1 band corresponds to the transmission window of the left CMBF at the left pupil. This is blocked by the right CMBF. The transmitted band is focused on the focal plane array (FPA).
Document ID
20110012587
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Bae, Youngsam
(California Inst. of Tech. Pasadena, CA, United States)
Manohara, Harish
(California Inst. of Tech. Pasadena, CA, United States)
White, Victor
(California Inst. of Tech. Pasadena, CA, United States)
Shcheglov, Kirill V.
(California Inst. of Tech. Pasadena, CA, United States)
Shahinian, Hrayr
(Skull Base Inst. United States)
Date Acquired
August 25, 2013
Publication Date
June 1, 2011
Publication Information
Publication: NASA Tech Briefs, June 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-47420
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available