NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Aerogel/Particle Composites for Thermoelectric DevicesOptimizing solution chemistry and the addition of titania and fumed silica powder reduces shrinkage. These materials would serve to increase thermal efficiency by providing thermal insulation to suppress lateral heat leaks. They would also serve to prolong operational lifetime by suppressing sublimation of certain constituents of thermoelectric materials (e.g., sublimation of Sb from CoSb3) at typical high operating temperatures. [The use of pure silica aerogels as cast-in-place thermal-insulation and sublimation-suppression materials was described in "Aerogels for Thermal Insulation of Thermoelectric Devices" (NPO-40630), NASA Tech Briefs, Vol. 30, No. 7 (July 2006), page 50.] A silica aerogel is synthesized in a solgel process that includes preparation of a silica sol, gelation of the sol, and drying of the gel in a solvent at a supercritical temperature and pressure. The utility of pure silica aerogel is diminished by a tendency to shrink (and, therefore, also to crack) during the gelation and supercritical-drying stages. Moreover, to increase suppression of sublimation, it is advantageous to make an aerogel having greater density, but shrinkage and cracking tend to increase with density. A composite material of the type under investigation consists mostly of titania oxide powder particles and a small addition of fumed silica powder, which are mixed into the sol along with other ingredients prior to the gelation stage of processing. The silica aerogel and fumed silica act as a binder, gluing the titania particles together. It is believed that the addition of fumed silica stiffens the aerogel network and reduces shrinkage during the supercritical-drying stage. Minimization of shrinkage enables establishment of intimate contact between thermoelectric legs and the composite material, thereby maximizing the effectiveness of the material for thermal insulation and suppression of sublimation. To some extent, the properties of the composite can be tailored via the proportions of titania and other ingredients. In particular (see figure), the addition of a suitably large proportion of titania (e.g., 0.6 g/cu cm) along with a 10-percent increase in the amount of tetraethylorthosilicate [TEOS (an ingredient of the sol)] to an aerogel component having a density 40 mg/cm3makes it possible to cast a high-average-density (>0.1 g/cm3) aerogel/particle composite having low shrinkage (2.3 percent).
Document ID
20110013074
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Paik, Jong-Ah
(California Inst. of Tech. Pasadena, CA, United States)
Sakamoto, Jeffrey
(California Inst. of Tech. Pasadena, CA, United States)
Jones, Steven
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
September 1, 2006
Publication Information
Publication: NASA Tech Briefs, September 2006
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-42031
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available