NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Advanced Three-Dimensional Display SystemA desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the system can be built by use of commercial off-the-shelf products. A prototype of the system displays an image of 1,024 by 768 by 170 (=133,693,440) voxels. In future designs, the resolution could be increased. The maximum number of voxels that can be generated depends upon the spatial resolution of SLM and the speed of rotation of the helix. For example, one could use an available SLM that has 1,024 by 1,024 pixels. Incidentally, this SLM is capable of operation at a switching speed of 300,000 frames per second. Implementation of full-color displays in future versions of the system would be straightforward: One could use three SLMs for red, green, and blue, respectively, and the colors of the voxels could be automatically controlled. An optically simpler alternative would be to use a single red/green/ blue light projector and synchronize the projection of each color with the generation of patterns for that color on a single SLM.
Document ID
20110014875
Acquisition Source
Stennis Space Center
Document Type
Other - NASA Tech Brief
Authors
Geng, Jason
(Genex Technologies, Inc. United States)
Date Acquired
August 25, 2013
Publication Date
April 1, 2005
Publication Information
Publication: NASA Tech Briefs, April 2005
Subject Category
Man/System Technology And Life Support
Report/Patent Number
SSC-00205
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available