NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
VortobotsThe term vortobots denotes proposed swimming robots that would have dimensions as small as micrometers or even nanometers and that would move in swarms through fluids by generating and exploiting vortices in a cooperative manner. Vortobots were conceived as means of exploring confined or otherwise inaccessible fluid environments: they are expected to be especially attractive for biomedical uses like examining the interiors of blood vessels. The main advantage of the vortobot concept, relative to other concepts for swimming microscopic robots, is that the mechanisms for locomotion would be relatively simple and, therefore, could be miniaturized more easily. For example, only a simple spinning paddle would be required to generate a vortex around a vortobot (see Figure 1). The difficulty is that a smart swarming and cooperative control algorithm would be necessary for purposeful locomotion. This necessity arises because, as a consequence of basic principles of vortex dynamics, an isolated single vortex cannot move by itself because its induced flow at the center is zero; however, a vortex can move other vortices by the induced flow. By cleverly adjusting the strength and sign of each member in a group of vortices, the group can achieve net translational motion in the preferred direction through cooperation. Figure 2 presents two simple examples that serve to illustrate the principle of cooperative motion of vortobots. For the sake of simplicity, these examples are based on an idealized two-dimensional potential flow of an inviscid, incompressible liquid. The example of the upper part of the figure is of two vortices of equal magnitude and opposite sign. The centers of the vortices would move along parallel paths. The example of the lower part of the figure is of two vortices of the same magnitude and sign. In this case, both vortices would move in a circle in diametrically opposite positions. More complex motions can be obtained by introducing more vortices (or pairs of vortices) and choosing different vortex strengths and orientations.
Document ID
20110014903
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Park, Han
(California Inst. of Tech. Pasadena, CA, United States)
Noca, Flavio
(California Inst. of Tech. Pasadena, CA, United States)
Koumoutsakos, Petros
(Eidgenoessische Technische Hochschule Zurich, Switzerland)
Date Acquired
August 25, 2013
Publication Date
May 1, 2005
Publication Information
Publication: NASA Tech Briefs, May 2005
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-21188
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available