NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Due to the lapse in federal government funding, NASA is not updating this website. We sincerely regret this inconvenience.

Back to Results
Asia from Space: New Ideas for ExplorationMegafans, also known (incorrectly) as inland deltas, are partial cones of fluvial sediment with radii >~100 km. Each is generated by a formative river avulsing across a lowland. The alluvial tract (channel, levee, overbank, etc.) is the building block for megafans. Planform and sectional analyses, based on SRTM data, reveal their conical, low-angle morphology. Megafans are not geologically rare as often assumed but a normal feature in the hierarchy of fluvial features that is slowly beginning to be understood. Our global survey contains a total of >150 examples worldwide, in all tectonic basin types, with a majority of smaller, more easily distinguished megafans occupying classic foreland basins (54%) which may explain the general view that megafans only form in Himalaya-like foreland basins, especially since the Kosi Megafan in the Indogangetic Plain is one of the best known in the geological literature. Recent research has shown that all actively alluviating basins are occupied by fanlike sediment masses, from the well known smaller and steeper alluvial fan (level 8 in Miall s hierarchy of fluvial forms), to the much larger megafan feature (level 9). A close relationship exists between upland basin size and fan size and slope. Larger upland drainage basins give rise to low-slope megafan sedimentation, which can cover very large areas where the receptacle basin exists individual megafan areas are 10(sup 3-5) square kilometers, and collectively cover 1.2 million square kilometers in South America, for example. The habitat of megafans is now sufficiently well understood that prediction of some modern cryptic megafan locations has been successfully achieved. Underground prediction therefore seems possible, where sufficient data exists. It seems necessary to distinguish megafans from (i) steep, coarse-grained mountain-front alluvial fans which are overwhelmingly coarse-grained, (ii) deltas, since megafans lack distal shoreline processes), and (iii) confined floodplains which lack radial drainage. Numerous other differences can be identified. As a normal component of the modern fluvial environment, megafans must exist in the subsurface. Megafan size, predictable channel patterns of the formative river, and the gradation from coarser to finer sediments from apex to toe of megafans are characteristics that ought to assist in understanding subsurface patterns of hydrocarbon host rocks, and possibly source rocks as well. We show examples from various producing basins. A roughness map of Asia, based on an algorithm developed for Mars, shows megafan landscapes to be dominated by short baseline roughness and low slopes, consistent with megafan-dominated plains worldwide. Interestingly, this a unique signature for a larger continental landform.
Document ID
20110015801
Acquisition Source
Johnson Space Center
Document Type
Abstract
Authors
Wilkinson, M. Justin
(Jacobs Technologies Engineering Science Contract Group Houston, TX, United States)
Date Acquired
August 25, 2013
Publication Date
September 1, 2011
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
JSC-CN-24699
Report Number: JSC-CN-24699
Meeting Information
Meeting: 16th Asia Upstream Conference
Country: Singapore
Start Date: September 28, 2011
End Date: September 30, 2011
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available