NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Controlling Force and Depth in Friction Stir WeldingFeedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).
Document ID
20110016397
Acquisition Source
Marshall Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Adams, Glynn
(Lockheed Martin Corp. Huntsville, AL, United States)
Loftus, Zachary
(Lockheed Martin Corp. Huntsville, AL, United States)
McCormac, Nathan
(Lockheed Martin Corp. Huntsville, AL, United States)
Venable, Richard
(Lockheed Martin Corp. Huntsville, AL, United States)
Date Acquired
August 25, 2013
Publication Date
November 1, 2005
Publication Information
Publication: NASA Tech Briefs, November 2005
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MFS-31310
Report Number: MFS-31310
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available