NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Freeze-Tolerant CondensersTwo condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.
Document ID
20110016561
Acquisition Source
Johnson Space Center
Document Type
Other - NASA Tech Brief
Authors
Crowley, Christopher J.
(Creare, Inc. Hanover, NH, United States)
Elkouhk, Nabil
(Creare, Inc. Hanover, NH, United States)
Date Acquired
August 25, 2013
Publication Date
January 1, 2004
Publication Information
Publication: NASA Tech Briefs, January 2004
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MSC-23003
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available