NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Dynamical Evolution of Meteoroid Streams, Developments Over the Last 30 YearsAs soon as reliable methods for observationally determining the heliocentric orbits of meteoroids and hence the mean orbit of a meteoroid stream in the 1950s and 60s, astronomers strived to investigate the evolution of the orbit under the effects of gravitational perturbations from the planets. At first, the limitations in the capabilities of computers, both in terms of speed and memory, placed severe restrictions on what was possible to do. As a consequence, secular perturbation methods, where the perturbations are averaged over one orbit became the norm. The most popular of these is the Halphen- Goryachev method which was used extensively until the early 1980s. The main disadvantage of these methods lies in the fact that close encounter can be missed, however they remain useful for performing very long-term integrations. Direct integration methods determine the effects of the perturbing forces at many points on an orbit. This give a better picture of the orbital evolution of an individual meteoroid, but many meteoroids have to be integrated in order to obtain a realistic picture of the evolution of a meteoroid stream. The notion of generating a family of hypothetical meteoroids to represent a stream and directly integrate the motion of each was probably first used by Williams Murray & Hughes (1979), to investigate the Quadrantids. Because of computing limitations, only 10 test meteoroids were used. Only two years later, Hughes et. al. (1981) had increased the number of particles 20-fold to 200 while after a further year, Fox Williams and Hughes used 500 000 test meteoroids to model the Geminid stream. With such a number of meteoroids it was possible for the first time to produce a realistic cross-section of the stream on the ecliptic. From that point on there has been a continued increase in the number of meteoroids, the length of time over which integration is carried out and the frequency with which results can be plotted so that it is now possible to produce moving images of the stream. As a consequence, over recent years, emphasis has moved to considering stream formation and the role fragmentation plays in this.
Document ID
20110016605
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Williams, I. P.
(London Univ. United Kingdom)
Date Acquired
August 25, 2013
Publication Date
July 1, 2011
Publication Information
Publication: Meteoroids: The Smallest Solar System Bodies
Subject Category
Space Sciences (General)
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available