NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Passage of Bolides Through the AtmosphereDifferent fragmentation models are applied to a number of events, including the entry of TC3 2008 asteroid in order to reproduce existing observational data. Keywords meteoroid entry fragmentation modeling 1 Introduction Fragmentation is a very important phenomenon which occurs during the meteoroid entry into the atmosphere and adds more drastic effects than mere deceleration and ablation. Modeling of bolide fragmentation (100 106 kg in mass) may be divided into several approaches. Detail fitting of observational data (deceleration and/or light curves) allows the determination of some meteoroid parameters (ablation and shape-density coefficients, fragmentation points, amount of mass loss) (Ceplecha et al. 1993; Ceplecha and ReVelle 2005). Observational data with high accuracy are needed for the gross-fragmentation model (Ceplecha et al. 1993), which is used for the analysis of European and Desert bolide networks data. Hydrodynamical models, which describe the entry of the meteoroid including evolution of its material, are applied mainly for large bodies (>106 kg) (Boslough et al. 1994; Svetsov et al. 1995; Shuvalov and Artemieva 2002, and others). Numerous papers were devoted to the application of standard equations for large meteoroid entry in the attempts to reproduce dynamics and/or radiation for different bolides and to predict meteorite falls. These modeling efforts are often supplemented by different fragmentation models (Baldwin and Sheaffer, 1971; Borovi.ka et al. 1998; Artemieva and Shuvalov, 2001; Bland and Artemieva, 2006, and others). The fragmentation may occur in different ways. For example, few large fragments are formed. These pieces initially interact through their shock waves and then continue their flight independently. The progressive fragmentation model suggests that meteoroids are disrupted into fragments, which continue their flight as independent bodies and may be disrupted further. Similar models were suggested in numerous papers, beginning with Levin (1956) and initial interaction of fragments started to be taken into account after the paper by Passey and Melosh (1980). The progressive fragmentation model with lateral spreading of formed fragments is widely used (Artemieva and Shuvalov, 1996; Nemtchinov and Popova, 1997; Borovi.ka et al. 1998; Bland and Artemieva, 2006).
Document ID
20110016613
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Popova, O.
(Academy of Sciences (Russia) Moscow, Russian Federation)
Date Acquired
August 25, 2013
Publication Date
July 1, 2011
Publication Information
Publication: Meteoroids: The Smallest Solar System Bodies
Subject Category
Space Sciences (General)
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available